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Types of Sensitivity Analyses

e Variables involved e Type of variation
— One-way — Single alternative values
— Multi-way — Monte Carlo analyses:

Draws from probability

* Type of component
Yb P distributions (many types of

being varied

variations)

— Parameter sensitivity e F : iati
analysis: Parameter requency ot variation
values — Static (parameter retains

— Structural sensitivity value all through simulation)
analysis: Examine effects — Ongoing change: Stochastic
of model structure on process
results e Accomplished via Monte-Carlo

analyses

e Key for DES & ABM



Model Uncertainty

e Here, we are frequently examining the impact of
changing
— Our assumptions about “how the system works”
— Our decision of how to abstract the system behaviour

e Structural sensitivity analyses
— Vary structure of model & see impact on

e Results
e Tradeoffs between choices

— Frequently recalibrate the model in this process

 Here, we are considering uncertainty about how the
current state is mapped to the next state



Predictor-Corrector Methods:
Dealing with an Incomplete Model

e Some approaches (e.g. Kalman filter, Particle
Filter) are motivated by awareness that
models are incomplete

e Such approaches try to adjust model state
estimates on an ongoing basis,
— Given uncertainty about model predictions

— New observations

 Assumption here is that the error in the model
is defined by some probability distribution



Static Uncertainty
Sensitivity Analyses

In variation, one can seek to investigate different
— Assumptions

— Policies

Same relative or absolute uncertainty in different

parameters may have hugely different effect on
outcomes or decisions

Help identify parameters/initial states that strongly

affect

— Key model results
— Choice between policies
We place more emphasis in parameter estimation &

interventions into parameters exhibiting high
sensitivity



Scope

Time

Integration

Cost

Spider Diagram

Tools

Quality

Procurement

HR

e Each axis represents a %
change in a particular
parameter

— This proportional change
- is identical for the

different parameters
» The distance assumed by
the curve along that axis
commnezten - represents the
magnitude of response
to that change
— Note that these

sensitivities will depend
on the state of system!

http://www.niwotridge.com/images/BLOGImages/SpiderDiagram.jpg



Systematic Examination of Policies

Sum of Total QALYs|

Tengs, Osgood, Lin



Add New “Parameters Variation” Experiment

1=TES
Experiment

Select an experiment type, specify a name and choose a root (top-level) active object.

MName: IParametersVariation

Main Active Object Class (root):  [Main |

Experiment Type:

€ Simulation Performs multiple model runs varying one or more parameters, optionally using

o replications.
gomlmlzahon You can later on add arbitrary UI to this experiment.
Parameters Yariation

DHPOD

[V Copy model time settings from : |Calibration |

< Back fext » Finish Cancel |




Setting Ranges for Parameter Variation
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Sensitivity Exploration in AnyLo
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Sensitivity Analyses in Vensim

Sensitivity Control. Edit the filename to save changes to a different control file

Filename: |Monte Carlo SIR.vsc Choose New File... I Clear Settings
Number of Noise o Multivariat " Univariat
. : 20000 1234 ultivariate nivariate
simulations I Seed I " Latin Hypercube " Latin Gnd
[~ Display waring messages ~ File I C ol I
Currently active parameters (drag to reorder)
Noise Seed=RANDOM_UNIFORM(0,10000) Delete Selected
Modify Selected
Add Editing
Distribution
Parameter |Mean Time to Recover |VE CTOR
Model Minimum Maximum  Increment
Value Value Value
1 |0 [10 1 | | |

Cancel |




Sensitivity in Initial States

Frequently we don’t know the exact state of the
system at a certain point in time

A very useful type of sensitivity analysis is to vary
the initial model state

In Vensim, this can be accomplished by

— Indicating a parameter name within the “initial value”
area for a stock

— Varying the parameter value
In an agent-based model, state has far larger
dimensionality

— Can modify different numbers of people with
characteristic, location of people with characteristic, etc.



Imposing a Probability Distribution
Monte Carlo Analysis

 We feed in probability distributions to reflect our
uncertainty about one or more parameters
e The model is run many, many times (realizations)

— For each realization, the model uses a different draw
from those probability distribution

 What emerges is resulting probability
distribution for model outputs



Example Resulting Distribution
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Static Uncertainty
Impact on cost of uncertainty regarding mortality and medical costs
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Multi-Way Sensitivity Analyses

e When examining the results of changing
multiple variables, need to consider how
multiple variables vary together

 If this covariation reflects dependence on
some underlying factor, may be able to
simulate uncertainty in underlying factor



Performing Monte Carlo
Sensitivity Analyses in Vensim

 Need to specify three things
— The parameters to vary
— How to vary those parameters
— Which model variables to save away



How & What Parameters to Vary

Sensitivity Control. Edit the filename to save changes to a different control file

Filename:

Number of
simulations

Simple SIR.vsc

1000

Noise
Seed

[ Display warning messages

|1234

Currently active parameters (drag to reorder)

Annual Birth and Death Rate=RANDOM_NORMAL(D,.05,.02,.01)

Choose New File... | Clear Settings

(¢ Multivariate " Univariate
(" Latin Hypercube " Latin Grid

" File | L. |

Delete Selected

Model
Value

Modify Selected
Add Editing
Distribution
Parameter “Per Contact Risk of Infection |RANDDM_UNIFDRM |
Minimum M axinmum
Value Value
.02 1 | | | |

0.05

OK

Cancel I

n I b



Model Values to Save Away

Savelist Control. Edit the filename to save changes to a different control file
Filename: ISimpIe SIR.Ist

Choose New File... | Clear Settings |

List of Vanables to be Saved (drag to reorder)

Susceptible
Infective
Flet_:overed Delete Selected
Incidence
Recovery
Fraction of Susceptibles in Population Modify Selected
Prevalence
Add Editing
Select

For subscripted varnables leave the subscripts off to save all elements.

0K I Cancel




Monte Carlo Analyses
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Sensitivity Results (Prevalence)

" N=1ml>] Prevalence: Sensitivity Graph O x|
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An observation at this point in time would produce a histogram (approximating a distribution)
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Monte Carlo Analyses in AnyLogic

 When running Monte Carlo analysis, we’d like to
summarize the results of multiple runs

 One option would be to display each trajectory over
time; downside: quickly gets messy

 AnylLogic’s solution

— Accumulate data regarding how many trajectories fall
within given areas of value for a given interval of time
using a “Histogram2D Data”

— Display the Histogram2D Chart



A

Hands on Model Use Ahead

Load Sample Model:

SIR Agent Based Calibration
(Via “Sample Models” under “Help” Menu)
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Important Distinction
(Declining Order of Aggregation)

e Experiment

— Collection of simulation

e Simulation

— Collection of replications that can yield findings
across set of replications (e.g. mean value)

e Replication

— One run of the model



Flexibility Typically Ignored

* In most AnyLogic models, an Experiment is
composed of a single Simulation, which is
composed of a single Replication

* |[n most AnyLogic models which run
“ensembles” of realizations, a simulation is
composed of only a single realization



Accumulating the Histogram2D dataset
from other datasets
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Monte Carlo Analyses in AnylLogic:
Specifying Distributions for Parameters
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Monte Carlo Output
After All Runs
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This experiment performs multiple (100) runs of the Agent Based SIR Model with SAME (default) parameter values.

As the model is essentially stochastic, each run resulls in a different output. In the chart above we display the summary of
simulation runs (namely, the dynamics of the Infectious population size) in the form of the 2D histogram. The color intensity
of a chart spot corresponds to the size of the corresponding 2D histogram bin.

Run: 49 {2 Running | Experiment: | Simulation: |G 25 ‘ D | Memory: [ 14 of 631 o | 35.5 sec




Monte Carlo Output
After All Runs
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This experiment performs multiple (100) runs of the Agent Based SIR Model with SAME (default) parameter values.

As the model is essentially stochastic, each run resulls in a different output. In the chart above we display the summary of
simulation runs (namely, the dynamics of the Infectious population size) in the form of the 2D histogram. The color intensity
of a chart spot corresponds to the size ofthe corresponding 2D histogram hin.
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